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Vector Product <& X 3

Vector Product (Cross Product) X 3E:

Magnitude:
|&><E|zabsin9 -
Direction(Right hand rule): b
) —_—
rotate from the first vector to the ORI
second vector. dot product

Right-handed coordinate system:
Ixj=k

aH
Y

Vector Product calculation:

@ x b = (a,i + ayj + ask) x (bl + byj + b,k)

= (ayb, — a,b, )1+ (a,by — axb,)j + (ayby — aybx)E

Simplified notation:

Tk

axb=la, a, a,
by b, b,
Properties:

axb=-bxa
axa=0
d(*xf))—dax5+éxd5
de \° T odt REAPT:

ax(bxé)=(@ &) xb—(a b)xé
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Rigid Body NI{&
Rigid body:
In order to investigate the problem. We need to make proper simplification.
Recap: mass point
A point with mass but no spatial extent.

Condition of an object can be regard as a mass point:

The object’s size is not significant to the problem.

Can we simplify the objects as mass point in the rotational case?
Ideal model: Rigid body.

Rigid body: is a solid body in which deformation is zero or so small it can
be neglected. The distance between any two given points on a rigid body
remains constant in time regardless of external forces or torques exerted
onit. ——

Examples of rigid body:

Condition of an object can be regard as rigid body: The deformation of
the object can be neglected.

Property of rigid body:
° The total work done by the internal force in a rigid body is always zero.

We don’t need to consider the work done by the internal force when
we apply work-energy principle to the rigid body

Rigid body (Optional) y
For the point M and N in a rigid body. The
displacement of M and N is d7y, and d7y,

internal force of M act on N is ﬁMN

Total work done by internal force o)

dW = Fyndiy + Fypdiy = Fun(diy — diy) = Fynd(@y — 7)
Property of rigid body:

[Tmn| = |7y — 7| = const == d(ﬁzm) =2(7y — FM)d(?N—FM) =0
By newton’s third law:

| Fun I| Gy —Tw) == Fynd(Fy —7) =0 = dw =0
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Rotation jE%%
Degrees of freedom of Rigid body: } n
For a rigid body without any constraint, the degrees of = . .
freedom is 6. gl
e Three translational degrees of freedom.

e Three rotational degrees of freedom.

Some typical motion of rigid body.

> Translational motion (i = 3):
Any segment connecting two points in the rigid

body remains parallel during the motion.

It can be regards as a mass point.

Degrees of freedom of Rigid body:

* Rotation along a fixed axis (i = 1): ‘
Two points in the rigid body are fixed. i

One rotational degree of freedom ‘

° Plane-parallel motion (i = 3):
Every point in the rigid body moves parallelly to a

certain plane.

One rotational degree of freedom
Two translational degrees of freedom

Degrees of freedom of Rigid body:

* Fixed-point motion (i = 3)

Three rotational degrees of freedom

° General motion (i = 6):
Can be decomposed into translational motion of a point

and rotation around the point.
We usually choose the center of mass as the reference point

Rotation along a fixed axis

Only one rotational degree of freedom

Reference line

Angular displacement: df = % """"""""""""

L

Conversion relationship: 1rev = 2 rad = 360°

de keeps the same for all point on a rotational object.
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Rotation along a fixed axis
Is angular displacement a vector?
4 I
z
Pl e S
x x x
Original position Rotate along z axis by 90° Rotate along y axis by 90°
' 4 z 3
/@j — “ i x ﬂy
Original position Rotate along y axis by 90° Rotate along z axis by 90°

* A finite angular displacement is not a vector.
» It does not obey commutative law of addition.

e But Infinitesimal angular displacement is a vector.

r————
| . -

Rotation along a fixed axis:
Rotation along a fixed axis
Angular velocity: w = ‘;—f +«——— Velocity: v = %

Sl unit of w: rad/s

Is angular velocity a vector?

* Angular velocity is also a vector since it is defined by
the infinitesimal angular displacement.

Direction of angular velocity?
* Along the rotational axis and using right hand law.

Rotation along a fixed axis

Angular speed: magnitude of the angular velocity

Relation between w and v:

V= wr z w

Relation between w andv: ~ .---"

S i

V=0 X5
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Rotation along a fixed axis

Angular acceleration:

dw d?0

a = o Am—

de de?

St unit of «: rad/s?

Direction of «: the same direction as w if w increases, opposite direction
to w if w decreases.

dw
a=E=>dw=adt S w—wy= | adt
If a is constant, then:
w=wy+at v =vy+at

L 1

9=00+a)t+§at x=x0+vt+zat

2 _ 2 _ 2 _ 3,2 _
w* =wj+ 2a(0 —0) v =v§ + 2a(x — xg)

Rotation along a fixed axis

For a point P; with radius 7; to the rotation axis, the relationship between
angular quantities and linear quantities:

! ds; ndo -
Tangential velocity: V¢ = i - W
dv, ndw _ - Y
Tangential acceleration: @ === "7~ =i
2
i — .&- — r.wz
Centripetal acceleration: @c¢ = 7.7 =

Example
Rotation along a fixed axis

A compact disk rotates from rest to 500 rev/min in 5.5s

(a) What is its angular acceleration, assuming that it is constant?

(b) How many revolutions does the disk make in 5.5s?

(c) How far does a point on the rim 6.0cm from the center of the disk travel
during the 5.5s it takes to get to 500 rev/min?
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Rotation along a fixed axis

A point on the rim of a compact disk is 6.00cm from the axis of rotation.
Find the tangential speed, tangential acceleration, and centripetal
acceleration of the point when the disk is rotating at a constant angular
speed of 300 rev/min .

vt = 1.88m/s
a, = 0
| a; = 59.2m/s?

Rotational kinetic energy

Particle system Rotation system

Mass m Moment of inertia [

Discrete particles: [ =), miriz
Continuous object: I = [r2dm
Kinetic energy Kinetic energy
1
E, = —mv? E, = =Iw?
K72 K72
Example: An object consists of four point Axis of rotation
. - ]
particles, each of mass m, connected by rigid 0
massless rods to form a rectangle of edge lengths un Q’-f-ﬂ’ 1y
2aand 2b, as shown in the right figure. The |
system rotates with angular speed w about an { I
axis in the plane of the figure through the center, - H F2
as shown. 2 :
(a) Find the kinetic energy of this object using l s '3 :74 iy
Yy 2 T g T

Ek =3 Tw~. I

I= Z mir? = mr? + mrf + mr{ + mr? l
= ma? + ma® + ma? + ma® = 4ma?
1
E, = Ela)z = E(4ma2)a)2 = 2ma?w?

(b) Check your result by individually calculating the kinetic energy of each
particle and then taking their sum.
Speed of each particle: v; =rw = aw

1
mv? = -ma’w?

N |-

Kinetic energy for each one: Ej; =

Total kinetic energy: Ej = 4(%ma2w2) = 2ma’w?
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Example: Find the moment of inertia of a thin !

|
|
uniform rod of length L and mass M about an i
axis perpendicular to the rod and through one il - " L
! L
[}

end.

1. The linear density of the rod is: N
A=M/L : ' | Tax

2. A mass element dm at a distance x from the axis.

M
dm = Adx = Idx

3. The moment of inertia about the y axis is:

Example: Find the moment of

inertia of a hoop of mass M and
radius R. The axis of rotation is
the symmetry axis of the hoop, [
which is perpendicular to the plane > 3( il -

z_o—‘f

NG
of the hoop and through its center. - =4 \

I=fr2dm

Please note that the radius r is independent of dm, so the equation above can be:

I=r2fdm=R2jdm=R2M

Example: Find the moment of
inertia of a uniform disk about a
perpendicular axis through its

center. The disk has mass M and

radius R.
1. The mass per unitarea o is:
M M
AT R

2. For the mass element of a
hoop with radius r, thickness dr and mass dm:

M
dm = 0dA = — (2nrdr)
TR?

3. The moment of inertia:

) R M 2M (R 2M(rt\* 1
I=-I.T dm=f0r WzanT=FLTdT=F Z(J:EMR
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Calculate the moment of inertia (Optional)

Determine the moment of inertia of a uniform hollow cylinder with inner
radius R,, outer radius Ry, and mass M about its symmetric axis.

M
Density of the hollow cylinder: p = o
If we fill the inner cylinder with virtual negative mass of — 1

density —p:

1 1
Then Il = —Z—M]'R]Z' 12 = E‘MzR%

Where M; = phnR}? M, = —phnR}

1 1
I=1 + I, =5 mph(R} — RY) = > M(R} + R3)

Parallel-axis theorem
Iy = Md? + 1,
d =1,

Parallel-axis theorem

Proof of parallel-axis theorem:
For a rotational axis through point A:

IR = [rzd'm = {i""(lnz
= f():,‘,,, + ) 2dm

= Md? + I,
Example: Applying the Parallel-Axis y y'l
Theorem. Q4l~>
A thin uniform rod of mass M and I [
length L on the x axis has one end at 2
the origin. Using the parallel-axis ' : ¥
theorem, find the moment of inertia cm :

about the y’ axis, which is parallel to
the y axis, and through the center of the rod.

1. We have got that I, = %ML2 about one end and want to find I,
2. Use the parallel-axis theorem with d = %L

2 1 2 1 2 1 2
L, =Md* + Iy = Iy=M(§L) +1m = Icmzly_ZML :EML
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Newton'’s 2nd Law for Rotation Je¥54—

A single force: N
- hY -
. .
F Tangential —, T
The tangential direction component if it direction '
is:
Ft = F Sln ® 2
Fy =ma; Particle 9 .-~
— — — p2
rF; = rma; = rm(ra) = mréa Rotation axis

Definition: Torsional torque or torque %E T
t=Fr=mr’a
SI unit: N-m
Direction: along the rotational axis and using right hand law.
For rigid object that rotate about a fixed axis

_ 2
Tinet = MiT; &

Zti net = Zmiriza = (Z miriz) a=Ia

Newton’s second law for Rotation
zrinet = ZText =la

T=Ila=Ira

Can be rewrite as

Notice
1. Torque here means the torque about the rotation axis.
2. The new torque caused by internal force always equals to zero.
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Torque due to gravity

The net gravitational torque can be calculated by considering the total
gravitational force (the sum of the microscopic gravitational forces) to
act at a single point i. e. center of gravity.

If the gravitational field g is parallel.
| o 71'17:11 Wity _ 2?7:11 m;gif; \
Yhawi  XEimg; \
If the gravitational field g is uniform.
Ry = 2%1 Wiy - 2?1:11 m;t;
Yiegwi  Xiamy

cge n;g

Xj

"
= Tem

The difference between cg and cm?

Torque due to gravity

The net gravitational torque can be calculated by considering the total
gravitational force (the sum of the microscopic gravitational forces) to
act at a single point i. e. center of gravity.

y
Tgrav = FyTcg SN0

If the gravitational field g is uniform and let x- cge
axis perpendicular to g i >

Tgrav = MgXcg

= inmig
i
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Applying Newton’s second law for Rotation along a fixed axis:

Procedure:
1. Draw a free-body diagram with the object shown as a likeness of
object (not just as a dot).
2. Draw each force vector along the line of action of that force.
3. On the diagram indicate the positive direction (clockwise or

counterclockwise) for rotation.

and mass M is pivoted at one end. It is

Example: A uniform thin rod of length L ‘ IL ‘

held horizontal and released. Effects +y
due to friction and air resistance are E At
negligible. Find
(a) the angular acceleration of the rod
immediately following its release, and
1. Sketch a free-body diagram of +
the rod shown above:
2. Write Newton’s second law for rotation: Y, Ty = @
3. Compute the torque due to gravity about the given axis. The rod is
uniform, so its center of gravity is at its center, a distance L/2 from the

. L
axis: Tgrqy = Mg;

4. Find the moment of inertia about the end of therod: I = %ML2 EEIRX
- g==l=y
5. Substitute these values into the step-2 equation to compute;:\ :J':Jﬂﬁ":‘ 19,
L AEXT
azrgrav=M97=3_g CM Hy

(b) the magnitude of the force exerted on the rod by the YA Fa
pivot at this instant.

1. Sketch a free-body diagram of the rod: y

2. Write Newton'’s second law for a system for the rod: —————————— 1

Fy —Mg =Macy,
3. Conservation of Mechanical energy:

u <L>—1I 2_1 1ML2 )
9\3)=3l0" =3GMe

3 1
W =—
L Mg

4. Use therelation a, = rw? tofind a,,: A | P
L. L35 3
2L 2

Aemn =Tcmw2 =§w
3 5
5. Fy=Mg+Mag,=Mg+M(3g) = F,=3g

(¢) What initial angular speed would be needed for the rod to just reach vertical
position at the top of its swing?

L 1 1/1 3g
N2 = Z(Zmr2) .2 — |29
Mg() 21w 2(3ML)w = w i
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Nonslip condition of string on a pulley wheel:
vy = WR
a; = aR

Example: Two blocks are
connected by a string that passes
over a pulley of radius R and
moment of inertia I. The block of
mass m, slides on a frictionless,
horizontal surface; the block of

mass m, is suspended from the
string. Find the acceleration o of
the blocks and the tensions T
and T,. The string does not slip on
the pulley.

1. Free-body diagram of block m;
T, = mqa
Free-body diagram of block m,
my,g — T, =mya
Free-body diagram of the pulley
T,R —TiR =l

2. For non-slip condition: a = a; = aR

3. a=—"2
“ m1+m2+(E)2g
T, =mja= T I 29
mq + m, + (E)
I\2
m: + (g)
T, =my(g—a) = > Mg

my | @] |

nag
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work of torque: \ -
dW = Fdl Tangential — - =
- Fds direction e
= Frd6
= 1d0
Power of torque: Particle .-~

p= aw Rotation axis
dt

power of torgque:
e maximum torgue produced by an engine is 678N - m of torque at

0 rev/min . Find the power output of the engine operating at these
imum torgue conditions

= :_j” I\\\
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Plane-parallel motion 3 [ £{TiE 5]

Every point in the rigid body moves parallelly to a certain plane.

Dynamic equations of plane-parallel motion:
Translational motion of center of mass:

ZFnet = Macm

Rotation along the center of mass:

Text—cm C‘n’l(Z

e The net torque caused by inertial force in CM frame to the entire
system is always zero.
e Evenif a., # 0, the equation above is correct.
Plane-parallel motion can be determined by:
Fext—x = MQcm—x
Fext—y = Macm—y

Text—cm = lem@

Kinetic Energy:

1 1
E, = EMUch + Elcmwz Only in CM reference fame

Plane-parallel motion:
Work-energy theorem for rigid body

Motion of center of mass:

o dﬁcm =

1 r 1 F
=) '51\/,71)(:?,,1([') = EMvc?m(tO) = J B i dr
to
Rotation along the center of mass:

dw
T oyt =3 Icm?i_t- Text—emd0 = I.mwdw

1 2 1 Z ’
mp - ln0c) —5lnw (to) = Text—cmd0
2 2 o
Work-energy theorem for rigid body
t ]
AEy, = E(6) — Ey(ty) = f Free - d7 + f Toxteem - d
to 6o

The change in kinetic energy of a rigid body is equal to the work done by
external forces on its center of mass plus the work done by external torques
about the center of mass.
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« |s the acceleration of point

* d, # 0 means the referen
the inertial torque generated by i

-l » If the mass distribution i
i ‘ The< ext—a = ’Aar
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Angular velocity of the rigid body about an arbitrary point (Optional)

Take 0, as reference point:
.  dr

dR  d(R,+17) S
e = —= =T+ B, X 7
dt dt V2t AR

) O, X7 =@ Xd+a, XD

=3
v=

Geometric relationship: # =d+7

Since 04, 0,, P are three arbitrary points on the rigid body.

- 51=82

Angular velocity of the rigid body about an arbitrary point (Optional)

Take O, as reference point: =

. _dR  d(R,+7# ai, . ‘
P St s T d e wE K ‘(

dt dt T "
. 1 X7 = X7y - T
dtric relat “ =d+7 /
:> Wy X 712 = g X

Since 0,, 0,, P aie threz a bitrary points on the rigid body.
w 51 = 52

Angular velocity of a rigid body is irrelevant to the reference point.
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system is z€
Evenif dgp, # 0,




Rotation JE4% 20 / 31

Plane-parallel motion:
Work-energy theorem for rigid body

* Kinetic Energy for rigid body:

il 1
Er— EMvgm +§Icmw2
*  Work-energy theorem for rigid body:

t 6

Fexe - dit + f Text—cmd0

MFi = B(®) = Eelto) = | 9

to
The change in kinetic energy of a rigid body is equal to the work done by
external forces on its center of mass plus the work done by external
torques about the center of mass.

Plane-parallel motion:

* Kinetic Energy:

1l
Ex = E Emiviz ==) General case
i

1 1
Ey = =Mvi, + Zimivfz
i

2 Only in CM

1 - reference frame
Ey = EMvc?m +'2'Icmw2

7. Non-slip Condition

When a string that is wrapped around a pulley or disk does not slip
vy =TW
a =ra
Rolling without slipping
Ve =TW
Aem =T
Point P with position 7 on the rigid body
By = Do + @ X T

If the velocity of the contact point A is zero
‘BA =ﬁcm+5XFA = (Ucm_wr)?= 0

Rotation without slipping (pure rolling) (Optional) ¥

Can we take point A as reference point? Yes

Benefit of we take point A as reference point:
The motion of the rigid body is fixed axis rotation.

0

Problems need to be care about:

° day # 0 means the reference frame is non-inertial, we need to consider
the inertial torque generated by inertial force.

> If the mass distribution is uniform, then Tjer—g = 0
» Then Toxr_pa = Ipa

« Does the angular velocity the same about center of mass and point 4,
ie. 6,4 = (:’.CM?
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Example: A cue stick strikes a F
cue ball horizontally at a pointa . _>’
distance d above the center of dT -

the ball. Find the value of d for
which the cue ball will roll
without slipping from the
beginning. Express your answer in terms of the radius R of the ball. (I, =
2

- MR?)

Newton’s 2nd Jaw:

{F:macm 1)

T=Ipa
t=Fd
Nonslip condition:
a.m = Ra
T Fd
(1) = F = ma,, = mRa = mR (—) =mR (—)
Icm Icm
2 11p2
Fd d I., TMR 2
=>F=mR(—>=>1:mR(—):>d=—:—=_
Iem Iem mR mR 5R

Example: A uniform solid ball of mass m and radius R rolls without slipping
down a plane inclined at an angle ® above the horizontal. Find the frictional

force and the acceleration of the center of mass. (I, = EMRZ).

Newton’s 2nd Jaw:
{Fx =mgsin® — f; = Macpm_»
T=f,R =1,
Nonslip condition:
acm = Ra
= fi=mgsin® —magy,_y

=mgsin® — mRa

=mgsin® —mR(f;R/I.;)
= fo + mR(f;R/I;y) = mg sin®
= f;[1 + mR?/I.,] = mgsin®
= f, =mgsin® /(1 + mR?/I,,) =mgsin® /(1+5/2) = (2/7) mg sin®
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Rotation with slipping (Optional)

Rotation with slipping

Condition:

Vg =T+ @ X7y =Wem—wR)#0

=) Vo F WR

Direction of friction:

Ve > wR ==) U, forward mmd Friction backward

Vem < @R == U, backward mm)  Friction forward

Friction does work in this case

Example: A bowling ball of mass M and

radius R is released at floor level so that at
release it is moving horizontally with
speedv, = 5.0 m/s and is not rotating. The
coefficient of kinetic friction between the
ball and the flooris u; = 0.080.

Find (a) the time the ball skids along the
floor (after which it begins rolling without
slipping), and (b) the distance the ball skids.

@) 1.
2.

Sketch a free-body diagram of the ball (Figure 9-41).

The net force on the ball is the force of kinetic friction f, ,
which acts in the negative x direction. Apply Newton's
second law:

The acceleration is in the negative x direction and ., =0
Find f, by first finding F :
Find the acceleration using the step-2 and step-3 results:

Relate the linear velocity to the constant acceleration and the
time using a kinematic equation:

Find a by applying Newton's second law for rotational
motion to the ball. Compute the torques about the axis
through the center of mass. Note that the free-body diagram
has clockwise as positive:

Relate the angular velocity to the constant angular
acceleration and the time using a kinematic equation:

Solve for the time t at which v = Ra:

(b) The distance traveled while skidding is

SF. = Ma_,,
_fk = Macmx
XF =Ma, =0=F = Mg

so fi=mkE, = mMg

_MkMg = Macmx = acmx = _‘u’kg

Ve = U Ta b =79, — pgt
Sr=1_a
wMgR + 0 + 0 = MR
5 1,8
SO o= ET
5m8

w=w0+at=0+at=§Tt

v, = R
5m8
(UO - p,kgt) = R(ETt)
20, 2(5.0m/s)
so ft

" 7wg  7(0.080)(9.81m/s?)

A t+la_ (2v0)+1
Ax = v 1 =o|— —
0 2%em 0 7ng 2

12 (5.0m/s)?
~ 49 (0.080)(9.81 m/s?)

=|18s

(—,LLkg)(

-]

29,

mg

:

12 9

49 8
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Angular Momentum Bz E

Definition: y

L=rXxp
Slunit: kg -m?/s

Conversion:
L=Fxp=7Fxmb
Fxm(wx71)
=mrio-—m(w- 771
L=I® only when the second term
equals zero. z

(a) A car of ma<s 1200kg mow
15m/s The circle is in the xy f
from a point o the positive 2
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Angular momentum.
Find the angular momentum about the origin for the following situations:

(b) The same car (1200kg) moves in the xy plane with velocity v = —15m/si
along the line y = y, = 20m parallel to the x axis

= m? _
L=FX}3=3.6X 105kg-Tk
X
Theorem of angular momentum:
dL Net torque act on the object equals to the

Tnet = dt change rate of angular momentum of the

Integral representation: object about the same point.

t
AL = f fnetdt
0

The change of angular momentum of the
Angular i Ise:
netiarirpuise object equals to the angular impulse exert
on the object about the same point.

t
f=ffnetdt = dL=dJ
0

Theorem of angular momentum for a system

—Y: —7:. My

M .

Considering a isolated system consists of two particles:

. dLgys r d(Ly +L;) _dL,  dL, v

dt dt  dt = dt 2
= i:l X I—}Zl +i:2 X F-:IZ

= —7y) X ﬁ21
=0

— Zsys = Z] s Zz = constant

Total angular momentum of a two-particle isolated system
about a certain point is conserved.

Theorem of angular momentum for a system

Notice:
il

Theorem of angular momentum is only suitable for inertial reference frame
28

Angular momentum is determined by the state of the system and the
reference point.

2

Angular impulse is related to the process and the reference point.

The reference point can be any stationary point in the inertial frame

The equation is a vector equation, the net external torque in any direction
is zero, then the total angular momentum in that direction is conserved.
Internal torque has no influence to the total angular momentum of the
system, but it will influence the angular momentum of each individual
particle in the system.

In a non-inertial frame, the contribution of inertial torque should be
considered.

n
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Angular momentum in center of mass reference frame (Optional)

Angular momentum in center of mass reference frame (Optional)

1%
n y] yl
L =|r,, x M, |+ Z B %

=1
/ \ ~ x€
0 &

Angular momentum of CM Angular momentum of other
about the reference pomnt parts about the CM.

oPi

The angular momentum of a system of particles about a certain point is the
sum of the angular momentum associated to the movement of the center of
mass about the reference point and the angular momentum associated to the
movement of the particles relative to the center of mass.
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Center of mass reference frame (Optional)

In general, the motion of a particle system can be decomposed to the
motion of CM and the motion of other parts about the CM.

The motion of CM is determined by: M@, = Frer—ext

The motion of other parts about the CM are determined by:

v dLsys L
Psys =0 dt = Tnet—ext—cm

Even the CM frame is non-inertial, the net work done by the inertial force
and the net inertial torque is all zero.

We can use the work-energy theorem and theorem of angular
# momentum in CM frame directly.

—

Theorem of angular momentum for fixed axis rotation situation

Recap: in the z direction:

T2= Traa X Fyy

In the same manner:
L;= Tyqq X Pxy

z component of theorem of angular momentum:

% _ dLgys ,
Tnet-extz = dt

Example: An Atwood’s machine has two blocks

with masses m; and my; (m; > m;) connected 3

by a string of negligible mass that passes over a ° 2 7 -
pulley with frictionless bearings. The pulley is a L, L

uniform disk of mass M and radius R. The string S S

does not slip on the pulley. Apply theorem of ) ’ ’

angular momentum to the system consisting of the

two blocks, the string, and the pulley, to find the ” \

angular acceleration of the pulley and the linear

acceleration of the blocks.

1. Let the system be everything that moves. Draw a free-body diagram of the system
(Figure 10-20). The only thing touching the system is the pulley bearings. The external

forces on the system are the normal force of the pulley bearings on the pulley and the
gravity forces on the two blocks and the pulley:

daL
2. Express Newton’s second law for rotation, z components > T, = d—:
only (Equation 10-16):
3. The total external torque about the z axis is the sum of D Ty = T Top T T T 7
the t
e torques exerted by the external forces. The moment —0+0+ mgR — mgR
arms for F and F , each equal R. (The moment arms of
F and F each equal Zero.) F = m,g and F@ m,g:
4. The total angular momentum about the z axis equals the L=L +L,+L,
angular momentum of the pulley, L , plus the = m,oR + m,oR + o

angular momenta of block 1, L and block 2, L each in
the positive z direction. The pulley has spin angular
momentum, but no orbital angular momentum because
its center of mass is at rest. Each block has orbital angular
momentum, but no spin angular momentum. FIGURE 10-20
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UL
5. Substitute these results into Newton’s second law for 3 T =

rotation in step 2: dt

d
m,gR — m,gR = E(m]vR + m,oR + lw)

m,gR — m,gR = (m, + m)Ra + la

6. Relate I to M and R, and use the nonslip condition to m,gR — m,gR = (m, + myRa + %MRZ%
relate & to a and solve for both a and a:

w© . m, — m, ¢
- 1
my +m, +, M

m, — I, g

m, +m, + MR

Conservation of Angular Momentum

. dL -
Tnet = % =0 = Lgys = constant

When the net external torque acting on a system about point remains zero,

the system’s angular momentum keeps constant.

General motion of a rigid body:

The degrees of freedom for a rigid body is 6.
* Three translational degrees of freedom.

» Three rotational degrees of freedom.

notion of the rigid body can be decomp into translatio

of CM and rotation about the CM.
We need 6 dynamic equations to confirm the motion of the rigid body.

5 dp )

Foopoxt = &Psys Translational

ne dt

dL
e = dstys Rotational

Conditions for Equilibrium:

If the body stay at rest:
° The net external force acting on the body must remain zero.
° The net external torque about any point must remain zero.

-

Fret-ext =0

Tnet—ext = 0
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Example: A uniform plank of length
L=3.00m and mass M=35kg is
supported by scales a distance d=0.50m

from the ends of the board, as shown in the
right figure. (a) Find the reading on the
scales when Mary, whose mass m=45kg,
stands on the left end of the plank. (b)
Sergio climbs onto the plank and walks

toward Mary, who jumps to the floor when
the plank starts to tip. Sergio keeps walking
all the way to the left end of the plank, and
when he gets there the scale supporting the

Plank M F ‘h‘

right end of the plank reads zero. Find Sergio’s mass.

SOLVE

i (2) 1. Draw a free-body diagram of the system consisting of
' Mary and the plank (Figure 12-3). Forces F, and F, are
the forces exerted by the left and right scales.

2. Set the net force equal to zero, EFy =0

taking upward as positive: F +F, —Mg—mg=0
d—] L-2d
[ xL )
L-2d —
Axis 2 C_g_ FR
mg Mg
F
L f—
3. Calculate the net torque about the axis directed out of the 27 = F(0) + F(L — 2d) — Mg + mgd
page (making counterclockwise positive) and through
the point of application of F;:
L =
4. Set the net torque equal to zero and solve for F: 0= FR(L - 2d) - Mg 5 + mgd
1 d
so k= (EM 1 de)g
: . . 1 d 1 L—d
5. Substitute this result for F, into the step-2 result and solve F=Mg+mg—|\-M—-——-m|g=|-M+ m)g
P < ° 2 L—2d 2 L-2d
or F:
, ) , , 1 0.50 m
6. Substitute numerical values to obtain numerical values for 5= 535 kg — 15 45 kg (9.81N/kg)
the forces: om
= 613N =
1 2.5m
EF = (535 kg + 2.0m45kg)(9.81 N/kg)
=723N =|72 x 10N
1 d
(b) Using the Part-(a) step-4 result, set F; = 0 and solve for m: = EM “1_2 dm g

L—2d 2.0m
= = =] 70k
so m °d 1.Om’;%Skg g
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Equilibrium &

the torque
ine the norm
mine the frictiol

(Optional)
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Summary F 45
1. Velocity and Acceleration
Velocity v =dx/dt Angular velocity w =de/dt
2 2
Acceleration a =% = d—f Angular acceleration a = do_ %
dt — dt dt — dt
Tangential velocity Ve =TwW
Tangential acceleration a; =ra
Centripetal acceleration a, = v?/r = w?r
2. Constant acceleration
vV=vy+at w=wy+at
1, 1
x=x0+vt+§at 9=90+wt+§at
v? = v + 2a(x — x;) w? = w3 + 2a(6 — )
3. Moment of Inertia
Systems of particles [ =), miriz
Continuous object I=[r2dm
Parallel-axis theorem [ =1, + Md?
4. Torque
T=Fur =Frsing = Fl
5. Newton’s Second law
Particle Plane-parallel motion
Z F=ma Fext—x = Macm—x
Fext—y = Mdacm-y
Text—cm = lem@
6. Non-slip Condition
Rolling without slipping
Ve =TW
Aem =TQ
Point P with position 7 on the rigid body
Vp = Ve + @ XT
If the velocity of the contact point A is zero
Vem = OT
7. Work and energy
Kinetic energy  Ej = %mv2 Kinetic energy  Ej = %Iwz
Power P=FV Power P=10
Kinetic energy for rotating object
1 1 5
E, = Emvcm + Elcmw
Work-energy theorem for rigid body:
t 6
BF = B(®) = E(0) = | Foredi + | Toxe-om 0
F,.,: onits center of mass J \\‘L’ext on its center of mass
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8. Angular Momentum

Momentum
p=mv

Angular Momentum
L=7xp (kg - m?/s)

R dL

Theorem of angular momentum:

Net torque act on the object equals to the

Tnet = E <
Integral representation:
t
AL = f fnetdt
0

Angular impulse:

t
J= f Tpetdt = dL=dj on the object about the same point.
0

change rate of angular momentum of the
object about the same point.

The change of angular momentum of the
i object equals to the angular impulse exert

dLgys

Conservation of Angular Momentum

Tnet = T 0= Zsys = constant

B3%

Vector Product KB X TR ... 2
Rigid BoAY B ... 3
Newton’s 20d Law for Rotation BEEE A T ... 11
Plane-parallel motion SEHE FEFTIBEN ......ccoovvvoeoeeceeeeeeceeeeeeeeeeeeeeeeeeeeee e 16
Angular Momentum FAFNIEE ..........ccoooooooooiieeeeeeeceeeeeeee e 23
EQUILIDIIUM J2HE oo 29
SUMMATY B GG ... 30



